Part Number Hot Search : 
03ZDT7T ES51985 MAB03063 MAB8441 2500T 02K74 D1680 EL6203CW
Product Description
Full Text Search
 

To Download TDA4320X Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FM-IF with Counter Output, Field Strength Indicator, Noise Detector and MUTE Setting
TDA 4320X
1 1.1 * * * * * * *
Overview Features
7-stage limiter amplifier Coincidence demodulator Counter output with request input Field strength output Multipath identification circuit Adjustable muting depth (with full muting 80 dB) This device is ESD protected Ordering Code Q67000-A-5000
P-DSO-16-1
Type TDA 4320X
Package P-DSO-16-1
Semiconductor Group
35
04.96
TDA 4320X
1.2
Pin Configuration (top view) P-DSO-16-1
Figure 1
1.3 1
Pin Definitions and Functions Function Ground Decoupling capacitors for bias, VS and VREF Pins are to be connected directly to Pin 1 GND
Pin No. Symbol
2
Multipath Multipath identification input identification input High impedance input (Ri ~ 10 k). This input receives the filtered field strength output (high pass or band pass). Rectifier time constant Multipath identification output MUTE input Rectifier time constant Determines the attack and release time of the identification circuit. Multipath identification output Open npn-collector output, which is low during (V4/V1 0.7 V) multipath interference. MUTE input For DC voltage (usually derived from field strength output voltage) which attenuates the AF output voltage by the setting muting depth (Pin 7). Max. attenuation when V5 = 0 V, no attenuation when V5 0.5 V. AF output Demodulated FM-IF.
36 04.96
3
4
5
6
AF output
Semiconductor Group
TDA 4320X
1.3 7
Pin Definitions and Functions (cont'd) Function MUTE depth Adjustment by connecting a dc voltage to ground the requested muting depth can be set. Maximal attenuation of AF output voltage with V7 = 2.4 V (typ. 38 dB), minimal attenuation with V7 = 4.8 V (typ. 0 dB). Full muting with V7 1 V ( 80 dB). Demodulator tank circuit Driven via two on-chip capacitors (approx.15 pF 25 %). The tank circuit voltage should be typ. 400 mVpp. Demodulator circuit Reference voltage Should be RF decoupled to Pin 1. IF counter output Provides the IF carrier frequency (low impedance output Rout 1.5 k). Supply voltage RF decoupled to Pin 1 Field strength output Supplies a DC voltage proportional to the IF input level with very low delay time. Field strength adjust Adjustment of slope and starting point of field strength output voltage IF input bias To be RF decoupled to Pin 1 IF input FM-lF input MUTE depth
Pin No. Symbol
8
Demodulator tank circuit Demodulator circuit Reference voltage IF counter output
9 10 11
12 13
VS
Field strength output Field strength adjust IF input bias IF input
14
15 16
Semiconductor Group
37
04.96
TDA 4320X
1.4
Functional Block Diagram
Figure 2
Semiconductor Group 38 04.96
TDA 4320X
2
Functional Description
The FM-IF demodulator TDA 4320X has been developed especially for car radio applications. The on-chip multipath identification circuit activates an interference suppression circuit in case of multipath interferences. 3 Circuit Description
The IC includes a 7-stage capacitive coupled limiter amplifier with coincidence demodulator and AF output. The AF output signal can be continuously attenuated to decrease the noise. In case of multipath interferences, the TDA 4320X includes an identification circuitry. There is a field strength output (with min. 76 dB dynamic range, typ. 1 dB nonlinearity and typ. 3 dB temperature drift), an IF counter output and an adjustable muting (with full muting 80 dB).
Semiconductor Group
39
04.96
TDA 4320X
4 4.1
Electrical Characteristics Absolute Maximum Ratings Symbol 0 Limit Values min. max. 13.2 150 125 105 -4 4 V C C K/W kV Unit Remarks
TA = - 40 C to + 85 C
Parameter Supply voltage
VS Junction temperature Tj Storage temperature TS Thermal resistance (system-air) RthSA ESD voltage, HBM (1.5 k, 100 pF) VESD
Note: Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.
4.2 Operating Range Symbol Limit Values min. Supply voltage Ambient temperature max. 13.2 85 V C 7.5 - 40 Unit Remarks
TA = - 40 C to + 85 C
Parameter
VS TA
Note: In the operating range the functions given in the circuit description are fulfilled.
Semiconductor Group
40
04.96
TDA 4320X
4.3
AC/DC Characteristics
VS = 10 V; filF = 10.7 MHz; f = 75 kHz; fmod = 1 kHz; ViIFrms = 10 mV; TA = - 40 C to + 85 C
Parameter Current consumption Stabilized voltage Field strength output - Dynamic range - Nonlinearity - Temperature drift - Load capacitance - Load resistance 1 Symbol Limit Values min. typ. max. mA 5.1 V dB dB 3 50 dB pF k 5.5 2.7 30 480 60 76 Signal-to-noise ratio Counter output voltage 76 50 3.2 4.3 2.5 2.5 Discharge current Pin 3 840 1.2 6.0 3.2 1.2 V V V Vrms 30 4.5 4.8 80 1 Unit Test Condition Test Circuit 1 1 D1 D2 D3
I12 V10 V13
V5 = 4.8 V; V7 = 4 V V5 = 4.8 V; V7 = 4 V V5 = 4.8 V; V7 = 4 V
V13 V13 V13
Input voltage for limiter threshold AF output voltage AM suppression
5.0 2.2 0
VilFrms = 200 mV VilFrms = 1 mV VilFrms = 0 mV VqAF = - 3 dB
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V16 VqAF aAM aS/N V11
mVrms V5 = 4.8 V; V7 = 4 V % dB dB dB
Total harmonic distortion THDqAF
V5 = 4.8 V; V7 = 4 V m = 80 % m = 30 % V5 = 4.8 V; V7 = 4 V
mVrms CL = 5 pF; Ri11 = 1.5 k mVrms f2 = 20 kHz mVrms f2 = 300 kHz mA mA A
Noise detector sensitivity V2
V2
Charge current Pin 3
I3
f2 = 20 kHz; V2 6 mVrms f2 = 300 kHz; V2 7 mVrms V2AC = 0 V
I3
20
Semiconductor Group
41
04.96
TDA 4320X
4.3
AC/DC Characteristics (cont'd)
VS = 10 V; filF = 10.7 MHz; f = 75 kHz; fmod = 1 kHz; ViIFrms = 10 mV; TA = - 40 C to + 85 C
Parameter AF MUTE Symbol Limit Values min. typ. max. dB 2 38 46 dB dB dB dB V V 0 -2 30 80 80 Voltage for MUTE OFF Voltage for MUTE ON 0.7 0 Unit Test Condition Test Circuit
aAF
V5 = 4.8 V; V7 = 4.8 V D4 V5 = 0 V; V7 = 4.8 V V5 = 0 V; V7 = 2.4 V V5 = 0 V; V7 1.0 V
D4 D4 D4 1 1
V5 = 4.8 V; V7 1.0 V D4
V5 V5
VS = 10 V; filF = 10.7 MHz; f = 75 kHz; fmod = 1 kHz; ViIFrms = 10 mV; TA = 25 C
Parameter Current consumption Stabilized voltage Field strength output Dynamic range Nonlinearity Temperature drift Load capacitance Load resistance Symbol Limit Values min. typ. max. Unit Test Condition Test Circuit
I12 V10 V13
30 4.6 74 4.8 80 1 3 50 1 5.0
mA V dB dB dB pF k V V V
V5 = 4.8 V; V7 = 4 V 1 V5 = 4.8 V; V7 = 4 V 1 V5 = 4.8 V; V7 = 4 V
D1 D2 D3
V13 V13 V13
Input voltage for limiter threshold AF output voltage
5.1 2.3 0
5.5 2.7 30
5.9 3.1 1.1 39 750 1.2
VilFrms = 200 mV VilFrms = 1 mV VilFrms = 0 mV
1 1 1 1
V16
VqAF aAM
Vrms VqAF = - 3 dB
550 60 76
650
mVrms V5 = 4.8 V; V7 = 4 V 1 % dB dB
V5 = 4.8 V; V7 = 4 V 1
Total harmonic distortion THDqAF AM suppression
m = 80 % m = 30 %
1 1
82
Semiconductor Group
42
04.96
TDA 4320X
4.3
AC/DC Characteristics (cont'd)
VS = 10 V; filF = 10.7 MHz; f = 75 kHz; fmod = 1 kHz; ViIFrms = 10 mV; TA = 25 C
Parameter Signal-to-noise ratio Counter output voltage Symbol Limit Values min. typ. max. Unit Test Condition Test Circuit
aS/N V11
76 50 2 2.7 1.6 1.6
84 80 3.2 4.3 2.5 2.5 20 0 6 7 4 4 40
dB
V5 = 4.8 V; V7 = 4 V
1 1 1 1 1 1 1 D4 D4 D4 D4 D4 1 1
mVrms CL = 5 pF; Ri11 = 1.5 k mVrms f2 = 20 kHz mVrms f2 = 300 kHz mA mA A dB 2 dB dB dB dB V 0.1 V
f2 = 20 kHz; V2 6 mVrms f2 = 300 kHz; V2 7 mVrms V2AC = 0 V V5 = 4.8 V; V7 = 4.8 V V5 = 0 V; V7 = 4.8 V V5 = 0 V; V7 = 2.4 V V5 = 4.8 V; V7 1.0 V V5 = 0 V; V7 1.0 V
Noise detector sensitivity V2
V2
Charge current Pin 3
I3
Discharge current Pin 3 AF MUTE
I3 aAF
10
-2 32 80 80
Voltage for MUTE OFF Voltage for MUTE ON
38
44
V5 V5
0.5 0
Semiconductor Group
43
04.96
TDA 4320X
Test Circuit 1
Figure 3
Semiconductor Group 44 04.96
TDA 4320X
Application Circuit
Figure 4
Semiconductor Group 45 04.96
TDA 4320X
Diagrams Diagram D1
VF Dynamics
The dynamic range of VF voltage is determined by the test points M1 through M4 as follows: M1: M2: M3: M4: test point (at ViIF = - 60 dBm) supplies VF(M1) test point (at ViIF = - 20 dBm) supplies VF(M2) test point (at ViIF = - 90 dBm) supplies VF(M3) test point (at ViIF = + 5 dBm) supplies VF(M4)
Hence follows:
MVF max := - 20 dBm + (VF(M4) - VF(M2))/(VF(M2) - VF(M1)) x 40 dB MVF min := - 60 dBV - (VF(M1) - VF(M3))/(VF(M2) - VF(M1)) x 40 dB VF Dynamics = MVF max - MVF min
Semiconductor Group 46 04.96
TDA 4320X
Diagram D2
Test points to determine VF linearity:
VF is determined at 25 C Slope: m = (VF(M2) - VF(M1))/40 dB. The tolerance range of the VF-linearity is determined by two parallel lines: VF max = VF(M1) + m(M + 60 dB + 1 dB) VF min = VF(M1) + m(M + 60 dB - 1 dB) The VF values within the VF dynamic range (MVF min M MVF max) must be inside the
predetermined tolerance range:
VF min VF(M) VF max
Semiconductor Group
47
04.96
TDA 4320X
Diagram D3
Test points to determine VF temperature drift:
VF-temperature drift: it is determined within - 40 to + 85 C. Slope: m = (VF(M2) - VF(M1))/40 dB (at 25 C). The tolerance range of the VF-temperature is determined by two parallel lines: VF max = VF(M1) + m(M + 60 dB + 3 dB) VF min = VF(M1) + m(M + 60 dB - 3 dB) The VF values for temperatures between - 40 to + 85 C within the VF dynamic range (MVF min VF MVF max) must be inside the predetermined tolerance field: VF min VF(M) VF max
Semiconductor Group
48
04.96
TDA 4320X
Diagram D4 Mute Characteristics
Semiconductor Group
49
04.96
TDA 4320X
5
Package Outlines P-DSO-16-1 (Plastic Dual Small Outline Package)
Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device Semiconductor Group 50
Dimensions in mm 04.96
GPS05119


▲Up To Search▲   

 
Price & Availability of TDA4320X

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X